Arithmetical interpretations of dynamic logic

Journal of Symbolic Logic 48 (3):704-713 (1983)
Abstract
An arithmetical interpretation of dynamic propositional logic (DPL) is a mapping f satisfying the following: (1) f associates with each formula A of DPL a sentence f(A) of Peano arithmetic (PA) and with each program α a formula f(α) of PA with one free variable describing formally a supertheory of PA; (2) f commutes with logical connectives; (3) f([α] A) is the sentence saying that f(A) is provable in the theory f(α); (4) for each axiom A of DPL, f(A) is provable in PA (and consequently, for each A provable in DPL, f(A) is provable in PA). The arithmetical completeness theorem is proved saying that a formula A of DPL is provable in DPL iff for each arithmetical interpretation f, f(A) is provable in PA. Various modifications of this result are considered
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

6 ( #196,681 of 1,096,620 )

Recent downloads (6 months)

6 ( #38,815 of 1,096,620 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.