Analysis 65 (286):112–119 (2005)
Abstract
The Cable Guy is coming. You have to be home in order for him to install your new cable service, but to your chagrin he cannot tell you exactly when he will come. He will definitely come between 8.a.m. and 4 p.m. tomorrow, but you have no more information than that. I offer to keep you company while you wait. To make things more interesting, we decide now to bet on the Cable Guy’s arrival time. We subdivide the relevant part of the day into two 4-hour long intervals, ‘morning’: (8, 12], and ‘afternoon’: (12, 4). You nominate an interval on which you will bet. If he arrives during your interval, you win and I will pay you \$10; otherwise, I win and you will pay me \$10. Notice that we stipulate that if he arrives exactly on the stroke of noon, then (8, 12] is the winning interval, since it is closed on the right; but we agree that this event has probability 0 (we have a very precise clock!). At first you think: obviously there is no reason to favour one interval over the other. Your probability distribution of his arrival time is uniform over the 8 a.m. – 4 p.m. period, and thus assigns probability 1/2 to each of the two 4-hour periods at issue. Whichever period you nominate, then, your expected utility is the same. The two choices are equally rational. But then you reason as follows. Suppose that you choose the morning interval. Then there will certainly be a period during which you will regard the other interval as..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list Follow the author(s) My bibliography Export citation Find it on Scholar Edit this record Mark as duplicate Revision history Request removal from index

 PhilPapers Archive Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,201 External links Setup an account with your affiliations in order to access resources via your University's proxy server Configure custom proxy (use this if your affiliation does not provide a proxy) Through your library Sign in / register to customize your OpenURL resolver.Configure custom resolver
References found in this work BETA
C. van Fraassen (1984). Belief and the Will. Journal of Philosophy 81 (5):235-256.
Citations of this work BETA
Similar books and articles

2009-01-28

123 ( #34,863 of 1,940,952 )