Stable Games

We introduce a new class of population games called stable games. These games are characterized by self-defeating externalities: when agents revise their strategies, the improvements in the payoffs of strategies to which revising players are switching are always exceeded by the improvements in the payoffs of strategies which revising players are abandoning. We show that stable games subsume many well-known classes of examples, including zero-sum games, games with an interior ESS, wars of attrition, and concave potential games. We prove that the set of Nash equilibria of any stable game is convex, and offer an elementary proof of existence of equilibrium. Finally, we show that the set of Nash equilibria of a stable game is globally asymptotically stable under a variety of evolutionary dynamics. These convergence results are proved by constructing Lyapunov functions defined in terms of revision potentials—that is, potential functions for the protocols agents follow when they consider switching strategies
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,822
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

15 ( #171,416 of 1,724,726 )

Recent downloads (6 months)

11 ( #59,608 of 1,724,726 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.