Stable Games

Abstract
We introduce a new class of population games called stable games. These games are characterized by self-defeating externalities: when agents revise their strategies, the improvements in the payoffs of strategies to which revising players are switching are always exceeded by the improvements in the payoffs of strategies which revising players are abandoning. We show that stable games subsume many well-known classes of examples, including zero-sum games, games with an interior ESS, wars of attrition, and concave potential games. We prove that the set of Nash equilibria of any stable game is convex, and offer an elementary proof of existence of equilibrium. Finally, we show that the set of Nash equilibria of a stable game is globally asymptotically stable under a variety of evolutionary dynamics. These convergence results are proved by constructing Lyapunov functions defined in terms of revision potentials—that is, potential functions for the protocols agents follow when they consider switching strategies
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-08-19

Total downloads

4 ( #251,104 of 1,098,129 )

Recent downloads (6 months)

1 ( #283,807 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.