Non-Turing Computers and Non-Turing Computability

Psa 1994:126--138 (1994)
A true Turing machine (TM) requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime (the spacetime of common sense), but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar ("close") to our world. But curiously enough-and this is the main point of this paper-some of these close worlds have a special spacetime structure that allows TMs to perform certain Turing unsolvable tasks. For example, in one kind of spacetime a TM can be used to solve first-order predicate logic and the halting problem. And in a more complicated spacetime, TMs can be used to decide arithmetic. These new computers serve to show that Church's thesis is a thoroughly contingent claim. Moreover, since these new computers share the fundamental properties of a TM in ordinary operation (e.g. intuitive, finitely programmed, limited in computational capability), a computability theory based on these non-Turing computers is no less worthy of investigation than orthodox computability theory. Some ideas about this new mathematical theory are given
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,209
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
Jack Copeland (1999). Beyond the Universal Turing Machine. Australasian Journal of Philosophy 77 (1):46-67.
K. Svozil (1995). Set Theory and Physics. Foundations of Physics 25 (11):1541-1560.

View all 7 citations / Add more citations

Similar books and articles
Mark Hogarth (2004). Deciding Arithmetic Using SAD Computers. British Journal for the Philosophy of Science 55 (4):681-691.
Tim Button (2009). SAD Computers and Two Versions of the Church–Turing Thesis. British Journal for the Philosophy of Science 60 (4):765-792.
Robert I. Soare (1996). Computability and Recursion. Bulletin of Symbolic Logic 2 (3):284-321.
Paolo Cotogno (2003). Hypercomputation and the Physical Church-Turing Thesis. British Journal for the Philosophy of Science 54 (2):181-223.

Monthly downloads

Added to index


Total downloads

39 ( #121,364 of 1,940,985 )

Recent downloads (6 months)

3 ( #272,533 of 1,940,985 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.