A New Three Dimensional Bivalent Hypercube Description, Analysis, and Prospects for Research

Neuroquantology 10 (1):12 (2012)
Abstract
A three dimensional hypercube representing all of the 4,096 dyadic computations in a standard bivalent system has been created. It has been constructed from the 16 functions arrayed in a table of functional completeness that can compute a dyadic relationship. Each component of the dyad is an operator as well as a function, such as “implication” being a result, as well as an operation. Every function in the hypercube has been color keyed to enhance the display of emerging patterns. At the minimum, the hypercube is a “multiplication table” of dyadic computations and produces values in a way that shortens the time to do operations that normally would take longer using conventional truth table methods. It also can serve as a theorem prover and creator. With the hypercube comes a deductive system without the need for axioms. The main significance of the 3-D hypercube at this point is that it is the most fundamental way of displaying all dyadic computations in binary space, thus serving as a way of normalizing the rendition of uninterpreted, or raw, binary space. The hypercube is a dimensionless entity, a standard by which in binary spaces can be measured and classified, analogous to a meter stick.
Keywords Three-dimensional Hypercube  Fundamental order  Theory of Order
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive Jeremy Horne, A New Three Dimensional Bivalent Hypercube Description, Analysis, and Prospects for Research
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2012-09-30

Total downloads

40 ( #43,551 of 1,102,993 )

Recent downloads (6 months)

5 ( #62,017 of 1,102,993 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.