On best transitive approximations to simple graphs

Abstract
Given any finite graph, which transitive graphs approximate it most closely and how fast can we find them? The answer to this question depends on the concept of “closest approximation” involved. In [8,9] a qualitative concept of best approximation is formulated. Roughly, a qualitatively best transitive approximation of a graph is a transitive graph which cannot be “improved” without also going against the original graph. A quantitative concept of best approximation goes back at least to [10]. A quantitatively best transitive approximation is a transitive graph that makes the minimal number of mistakes against the original graph. In other words, the sum of the edges that are removed from and are added to the original graph is minimal.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,369
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

3 ( #224,323 of 1,089,253 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.