A proofless proof of the Barwise compactness theorem

Journal of Symbolic Logic 53 (2):597-602 (1988)
Abstract
We prove a theorem (1.7) about partial orders which can be viewed as a version of the Barwise compactness theorem which does not mention logic. The Barwise compactness theorem is easily equivalent to 1.7 + "Every Henkin set has a model". We then make the observation that 1.7 gives us the definability of forcing for quantifier-free sentences in the forcing language and use this to give a direct proof of the truth and definability lemmas of forcing
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,819
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

5 ( #234,761 of 1,099,914 )

Recent downloads (6 months)

1 ( #304,017 of 1,099,914 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.