Hempel's Logic of Confirmation

Philosophical Studies 139 (2):181 - 189 (2008)
Abstract
This paper presents a new analysis of C.G. Hempel’s conditions of adequacy for any relation of confirmation [Hempel C. G. (1945). Aspects of scientific explanation and other essays in the philosophy of science. New York: The Free Press, pp. 3–51.], differing from the one Carnap gave in §87 of his [1962. Logical foundations of probability (2nd ed.). Chicago: University of Chicago Press.]. Hempel, it is argued, felt the need for two concepts of confirmation: one aiming at true hypotheses and another aiming at informative hypotheses. However, he also realized that these two concepts are conflicting, and he gave up the concept of confirmation aiming at informative hypotheses. I then show that one can have Hempel’s cake and eat it too. There is a logic that takes into account both of these two conflicting aspects. According to this logic, a sentence H is an acceptable hypothesis for evidence E if and only if H is both sufficiently plausible given E and sufficiently informative about E. Finally, the logic sheds new light on Carnap’s analysis.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    View all 16 references

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    32 ( #45,905 of 1,088,832 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,832 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.