Cognitive Principles for Information Management: The Principles of Mnemonic Associative Knowledge (P-MAK) [Book Review]

Minds and Machines 17 (4):445-485 (2007)
Abstract
Information management systems improve the retention of information in large collections. As such they act as memory prostheses, implying an ideal basis in human memory models. Since humans process information by association, and situate it in the context of space and time, systems should maximize their effectiveness by mimicking these functions. Since human attentional capacity is limited, systems should scaffold cognitive efforts in a comprehensible manner. We propose the Principles of Mnemonic Associative Knowledge (P-MAK), which describes a framework for semantically identifying, organizing, and retrieving information, and for encoding episodic events by time and stimuli. Inspired by prominent human memory models, we propose associative networks as a preferred representation. Networks are ideal for their parsimony, flexibility, and ease of inspection. Networks also possess topological properties—such as clusters, hubs, and the small world—that aid analysis and navigation in an information space. Our cognitive perspective addresses fundamental problems faced by information management systems, in particular the retrieval of related items and the representation of context. We present evidence from neuroscience and memory research in support of this approach, and discuss the implications of systems design within the constraints of P-MAK’s principles, using text documents as an illustrative semantic domain
Keywords Information management  Memory prosthesis  Associationism  Semantic similarity  Co-occurrence  Spatio-temporal context  Episodic events  Associative networks  Spreading activation
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,493
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

13 ( #123,345 of 1,102,518 )

Recent downloads (6 months)

7 ( #37,071 of 1,102,518 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.