Comparing notions of similarity for uncountable models

Journal of Symbolic Logic 60 (4):1153-1167 (1995)
Abstract
The present article, which is a revised version of part of [Hu1], deals with various relations between models which might serve as exact formulations for the vague concept "similar" or "almost isomorphic". One natural class of such formulations is equivalence in a given logic. Another way to express similarity is by potential isomorphism, i.e., isomorphism in some extension of the set-theoretic universe. The class of extensions may be restricted to give different notions of potential isomorphism. A third method is to study the winning strategies for an Ehrenfeucht-Fraisse-game played between the two models, and the properties of the resulting equivalence and nonequivalence trees. The basic question studied here is whether one such notion of similarity implies another. Some implications and counterexamples listed in this part are previously known or trivial, but all are mentioned for completeness' sake. Only models of cardinality ℵ 1 are considered. Some results are therefore connected with the Continuum Hypothesis
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #441,126 of 1,101,779 )

Recent downloads (6 months)

1 ( #292,275 of 1,101,779 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.