Logic for A.I. - Solutions

Abstract
Axiom 1 of K is the same as Axiom 1 in L, thus we have nothing to prove. Axiom 2 of K is 2(φ → ψ) → (2φ → 2ψ). We give a derivation of this formula in L: (φ → ψ) ∧ φ → ψ 2((φ → ψ) ∧ φ) → 2ψ (the rule from L) 2(φ → ψ) ∧ 2φ → 2ψ (axiom 3 of L and propositional logic) 2(φ → ψ) → (2φ → 2ψ) (propositional logic) Remain the rules of K. Modus ponens is a rule of both so there is nothing to prove. We show that L proves the Necessitation rule. That is, we have to show that if L φ, then L 2φ. The following derivation in L from assumption φ shows this: φ → φ (propositional logic) 2 → 2φ (the rule from L) 2φ (modus ponens using axiom 2 ) This completes the direction of the proof form left to right.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2010-04-09

    Total downloads

    16 ( #85,963 of 1,088,831 )

    Recent downloads (6 months)

    1 ( #69,665 of 1,088,831 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.