A topos perspective on the kochen-Specker theorem: I. Quantum states as generalised valuations

Abstract
Any attempt to construct a realist interpretation of quantum theory founders on the Kochen-Specker theorem, which asserts the impossibility of assigning values to quantum quantities in a way that preserves functional relations between them. We construct a new type of valuation which is defined on all operators, and which respects an appropriate version of the functional composition principle. The truth-values assigned to propositions are (i) contextual; and (ii) multi-valued, where the space of contexts and the multi-valued logic for each context come naturally from the topos theory of presheaves. The first step in our theory is to demonstrate that the Kochen-Specker theorem is equivalent to the statement that a certain presheaf defined on the category of self-adjoint operators has no global elements. We then show how the use of ideas drawn from the theory of presheaves leads to the definition of a generalised valuation in quantum theory whose values are sieves of operators. In particular, we show how each quantum state leads to such a generalised valuation. A key ingredient throughout is the idea that, in a situation where no normal truth-value can be given to a proposition asserting that the value of a physical quantity A lies in a set D of real numbers , it is nevertheless possible to ascribe a partial truth-value which is determined by the set of all coarse-grained propositions that assert that some function f(A) lies in f(D), and that are true in a normal sense. The set of all such coarse-grainings forms a sieve on the category of self-adjoint operators, and is hence fundamentally related to the theory of presheave.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA
    David Corfield (2002). Conceptual Mathematics: A First Introduction to Categories. Studies in History and Philosophy of Science Part B 33 (2):359-366.
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    26 ( #56,540 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.