Continuity and nondiscontinuity in constructive mathematics

Journal of Symbolic Logic 56 (4):1349-1354 (1991)
Abstract
The purpose of this paper is an axiomatic study of the interrelations between certain continuity properties. We show that every mapping is sequentially continuous if and only if it is sequentially nondiscontinuous and strongly extensional, and that "every mapping is strongly extensional", "every sequentially nondiscontinuous mapping is sequentially continuous", and a weak version of Markov's principle are equivalent. Also, assuming a consequence of Church's thesis, we prove a version of the Kreisel-Lacombe-Shoenfield-Tsĕitin theorem
Keywords Sequentially continuous   sequentially nondiscontinuous   weak version of Markov's principle   Kreisel-Lacombe-Shoenfield-Tseitin theorem
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,412
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #259,269 of 1,103,048 )

Recent downloads (6 months)

2 ( #183,252 of 1,103,048 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.