Geometry and spatial intuition : a genetic approach

In this thesis, I investigate the nature of geometric knowledge and its relationship to spatial intuition. My goal is to rehabilitate the Kantian view that Euclid's geometry is a mathematical practice, which is grounded in spatial intuition, yet, nevertheless, yields a type of a priori knowledge about the structure of visual space. I argue for this by showing that Euclid's geometry allows us to derive knowledge from idealized visual objects, i.e., idealized diagrams by means of non-formal logical inferences. By developing such an account of Euclid's geometry, I complete the "standard view" that geometry is either a formal system (pure geometry) or an empirical science (applied geometry), which was developed mainly by the logical positivists and which is currently accepted by many mathematicians and philosophers. My thesis is divided into three parts. I use Hans Reichenbach's arguments against Kant and Edmund Husserl's genetic approach to the concept of space as a means of arguing that the "standard view" has to be supplemented by a concept of a geometry whose propositions have genuine spatial content. I then develop a coherent interpretation of Euclid's method by investigating both the subject matter of Euclid's geometry and the nature of geometric inferences. In the final part of this thesis, I modify Husserl's phenomenological analysis of the constitution of visual space in order to define a concept of spatial intuition that allows me not only to explain how Euclid's practice is grounded in visual space, but also to account for the apriority of its results
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Lisa Shabel (2004). Kant's "Argument From Geometry". Journal of the History of Philosophy 42 (2):195-215.
    Gary Hatfield (1984). Spatial Perception and Geometry in Kant and Helmholtz. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:569 - 587.

    Monthly downloads

    Added to index


    Total downloads

    49 ( #27,954 of 1,088,810 )

    Recent downloads (6 months)

    4 ( #24,213 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.