Implicit measurements of dynamic complexity properties and splittings of speedable sets

Journal of Symbolic Logic 64 (3):1037-1064 (1999)
We prove that any speedable computably enumerable set may be split into a disjoint pair of speedable computably enumerable sets. This solves a longstanding question of J.B. Remmel concerning the behavior of computably enumerable sets in Blum's machine independent complexity theory. We specify dynamic requirements and implement a novel way of detecting speedability-by embedding the relevant measurements into the substage structure of the tree construction. Technical difficulties in satisfying the dynamic requirements lead us to implement "local" strategies that only look down the tree. The (obvious) problems with locality are then resolved by placing an isomorphic copy of the entire priority tree below each strategy (yielding a self-similar tree). This part of the construction could be replaced by an application of the Recursion Theorem, but shows how to achieve the same effect with a more direct construction
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2586618
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,209
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

16 ( #282,123 of 1,941,073 )

Recent downloads (6 months)

1 ( #458,098 of 1,941,073 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.