A Journey More Important Than Its Destination: Einstein's Quest for General Relativity, 1907–1920

Abstract
In 1907, Einstein set out to fully relativize all motion, no matter whether uniform or accelerated. After five failed attempts between 1907 and 1918, he finally threw in the towel around 1920, setting himself a new goal. For the rest of his life he searched for a classical field theory unifying gravity and electromagnetism. As he struggled to relativize motion, Einstein had to readjust both his approach and his objectives at almost every step along the way; he got himself hopelessly confused at times; he fooled himself with fallacious arguments and sloppy calculations; and he committed what he later allegedly called the biggest blunder of his career: he introduced the cosmological constant. There is a very uplifting moral to this somber tale. Although Einstein never reached his original destination, the harvest of his thirteen-year odyssey is quite impressive. First of all, what is left of absolute motion in general relativity is far more palatable than absolute motion in special relativity or Newtonian theory. And general relativity does seem to eliminate absolute space. More importantly, from a modern physics point of view, Einstein produced a spectacular new theory of gravity based on what he called the equivalence principle. This principle says that inertial and gravitational effects are due to one and the same structure, the inertio-gravitational field, which in Einstein’s theory is represented by a metric tensor field. In addition to laying the foundations of this theory, Einstein, among other things, launched relativistic cosmology, suggested the possibility of gravitational waves, gave the first sensible definition of a space-time singularity, and caught on to the intimate connection between general covariance and energy-momentum conservation, an example of the general connection between symmetries and conservation laws of Noether’s theorems. These results more than make up for the—at least by the standards of modern philosophy of science—rather opportunistic way in which they were obtained..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,374
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

14 ( #110,445 of 1,096,849 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.