Universality of the closure space of filters in the algebra of all subsets

Studia Logica 44 (1):1 - 9 (1985)
  Copy   BIBTEX

Abstract

In this paper we show that some standard topological constructions may be fruitfully used in the theory of closure spaces (see [5], [4]). These possibilities are exemplified by the classical theorem on the universality of the Alexandroff's cube for T 0-closure spaces. It turns out that the closure space of all filters in the lattice of all subsets forms a generalized Alexandroff's cube that is universal for T 0-closure spaces. By this theorem we obtain the following characterization of the consequence operator of the classical logic: If is a countable set and C: P() P() is a closure operator on X, then C satisfies the compactness theorem iff the closure space ,C is homeomorphically embeddable in the closure space of the consequence operator of the classical logic.We also prove that for every closure space X with a countable base such that the cardinality of X is not greater than 2 there exists a subset X of irrationals and a subset X of the Cantor's set such that X is both a continuous image of X and a continuous image of X.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
32 (#488,786)

6 months
5 (#638,139)

Historical graph of downloads
How can I increase my downloads?

References found in this work

An algebraic approach to non-classical logics.Helena Rasiowa - 1974 - Warszawa,: PWN - Polish Scientific Publishers.
Model Theory.Gebhard Fuhrken - 1976 - Journal of Symbolic Logic 41 (3):697-699.
A conjunction in closure spaces.Andrzej W. Jankowski - 1984 - Studia Logica 43 (4):341 - 351.

Add more references