Algorithmic randomness in empirical data

Abstract
According to a traditional view, scientific laws and theories constitute algorithmic compressions of empirical data sets collected from observations and measurements. This article defends the thesis that, to the contrary, empirical data sets are algorithmically incompressible. The reason is that individual data points are determined partly by perturbations, or causal factors that cannot be reduced to any pattern. If empirical data sets are incompressible, then they exhibit maximal algorithmic complexity, maximal entropy and zero redundancy. They are therefore maximally efficient carriers of information about the world. Since, on algorithmic information theory, a string is algorithmically random just if it is incompressible, the thesis entails that empirical data sets consist of algorithmically random strings of digits. Rather than constituting compressions of empirical data, scientific laws and theories pick out patterns that data sets exhibit with a certain noise.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

12 ( #128,722 of 1,101,764 )

Recent downloads (6 months)

4 ( #81,958 of 1,101,764 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.