U-monad topologies of hyperfinite time lines

Journal of Symbolic Logic 57 (2):534-539 (1992)
In an ω1-saturated nonstandard universe a cut is an initial segment of the hyperintegers which is closed under addition. Keisler and Leth in [KL] introduced, for each given cut U, a corresponding U-topology on the hyperintegers by letting O be U-open if for any x ∈ O there is a y greater than all the elements in U such that the interval $\lbrack x - y, x + y\rbrack \subseteq O$ . Let U be a cut in a hyperfinite time line H, which is a hyperfinite initial segment of the hyperintegers. The U-monad topology of H is the quotient topology of the U-topological space H modulo U. In this paper we answer a question of Keisler and Leth about the U-monad topologies by showing that when H is κ-saturated and has cardinality κ, (1) if the coinitiality of U1 is uncountable, then the U1-monad topology and the U2-monad topology are homeomorphic iff both U1 and U2 have the same coinitiality; and (2) H can produce exactly three different U-monad topologies (up to homeomorphism) for those U's with countable coinitiality. As a corollary H can produce exactly four different U-monad topologies if the cardinality of H is ω1
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275288
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,879
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

9 ( #245,981 of 1,725,237 )

Recent downloads (6 months)

5 ( #134,514 of 1,725,237 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.