A calculus for first order discourse representation structures

Abstract
This paper presents a sound and complete proof system for the first order fragment of Discourse Representation Theory. Since the inferences that human language users draw from the verbal input they receive for the most transcend the capacities of such a system, it can be no more than a basis on which more powerful systems, which are capable of producing those inferences, may then be built. Nevertheless, even within the general setting of first order logic the structure of the formulas of DRS-languages, i.e. of the Discourse Representation Structures suggest for the components of such a system inference rules that differ somewhat from those usually found in proof systems for the first order predicate calculus and which are, we believe, more in keeping with inference patterns that are actually employed in common sense reasoning.This is why we have decided to publish the present exercise, in spite of the fact that it is not one for which a great deal of originality could be claimed. In fact, it could be argued that the problem addressed in this paper was solved when Gödel first established the completeness of the system of Principia Mathematica for first order logic. For the DRS-languages we consider here are straightforwardly intertranslatable with standard formulations of the predicate calculus; in fact the translations are so straightforward that any sound and complete proof system for first order logic can be used as a sound and complete proof system for DRSs: simply translate the DRSs into formulas of predicate logic and then proceed as usual. As a matter of fact, this is how one has chosen to proceed in some implementations of DRT, which involve inferencing as well as semantic representation; an example is the Lex system developed jointly by IBM and the University of Tübingen (see in particular (Guenthner et al. 1986)).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,337
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

25 ( #66,443 of 1,096,602 )

Recent downloads (6 months)

1 ( #265,702 of 1,096,602 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.