Types in logic and mathematics before 1940

Bulletin of Symbolic Logic 8 (2):185-245 (2002)
Abstract
In this article, we study the prehistory of type theory up to 1910 and its development between Russell and Whitehead's Principia Mathematica ([71], 1910-1912) and Church's simply typed λ-calculus of 1940. We first argue that the concept of types has always been present in mathematics, though nobody was incorporating them explicitly as such, before the end of the 19th century. Then we proceed by describing how the logical paradoxes entered the formal systems of Frege, Cantor and Peano concentrating on Frege's Grundgesetze der Arithmetik for which Russell applied his famous paradox and this led him to introduce the first theory of types, the Ramified Type Theory (RTT). We present RTT formally using the modern notation for type theory and we discuss how Ramsey, Hilbert and Ackermann removed the orders from RTT leading to the simple theory of types STT. We present STT and Church's own simply typed λ-calculus (λ → C) and we finish by comparing RTT, STT and λ → C
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

5 ( #219,641 of 1,096,674 )

Recent downloads (6 months)

3 ( #105,642 of 1,096,674 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.