A map of common knowledge logics

Studia Logica 71 (1):57-86 (2002)
In order to capture the concept of common knowledge, various extensions of multi-modal epistemic logics, such as fixed-point ones and infinitary ones, have been proposed. Although we have now a good list of such proposed extensions, the relationships among them are still unclear. The purpose of this paper is to draw a map showing the relationships among them. In the propositional case, these extensions turn out to be all Kripke complete and can be comparable in a meaningful manner. F. Wolter showed that the predicate extension of the Halpern-Moses fixed-point type common knowledge logic is Kripke incomplete. However, if we go further to an infinitary extension, Kripke completeness would be recovered. Thus there is some gap in the predicate case. In drawing the map, we focus on what is happening around the gap in the predicate case. The map enables us to better understand the common knowledge logics as a whole.
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
DOI 10.1023/A:1016387008323
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,831
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

8 ( #266,752 of 1,724,865 )

Recent downloads (6 months)

3 ( #210,938 of 1,724,865 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.