Game logic and its applications I

Studia Logica 57 (2-3):325 - 354 (1996)
Abstract
This paper provides a logic framework for investigations of game theoretical problems. We adopt an infinitary extension of classical predicate logic as the base logic of the framework. The reason for an infinitary extension is to express the common knowledge concept explicitly. Depending upon the choice of axioms on the knowledge operators, there is a hierarchy of logics. The limit case is an infinitary predicate extension of modal propositional logic KD4, and is of special interest in applications. In Part I, we develop the basic framework, and show some applications: an epistemic axiomatization of Nash equilibrium and formal undecidability on the playability of a game. To show the formal undecidability, we use a term existence theorem, which will be proved in Part II.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2009-01-28

    Total downloads

    1 ( #306,312 of 1,089,047 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.