On external Scott algebras in nonstandard models of peano arithmetic

Journal of Symbolic Logic 61 (2):586-607 (1996)
We prove that a necessary and sufficient condition for a countable set L of sets of integers to be equal to the algebra of all sets of integers definable in a nonstandard elementary extension of ω by a formula of the PA language which may include the standardness predicate but does not contain nonstandard parameters, is as follows: L is closed under arithmetical definability and contains 0 (ω) , the set of all (Gödel numbers of) true arithmetical sentences. Some results related to definability of sets of integers in elementary extensions of ω are included
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275677
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

6 ( #336,406 of 1,726,249 )

Recent downloads (6 months)

5 ( #147,227 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.