Pi on Earth, or Mathematics in the Real World

Erkenntnis 68 (3):421 - 435 (2008)
Abstract
We explore aspects of an experimental approach to mathematical proof, most notably number crunching, or the verification of subsequent particular cases of universal propositions. Since the rise of the computer age, this technique has indeed conquered practice, although it implies the abandonment of the ideal of absolute certainty. It seems that also in mathematical research, the qualitative criterion of effectiveness, i.e. to reach one's goals, gets increasingly balanced against the quantitative one of efficiency, i.e. to minimize one's means/ends ratio. Our story will lead to the consideration of some limit cases, opening up the possibility of proofs of infinite length being surveyed in a finite time. By means of example, this should show that mathematical practice in vital aspects depends upon what the actual world is like.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,088
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Jean Paul Van Bendegem (2005). Proofs and Arguments: The Special Case of Mathematics. Poznan Studies in the Philosophy of the Sciences and the Humanities 84 (1):157-169.
Edwin Coleman (2009). The Surveyability of Long Proofs. Foundations of Science 14 (1-2):27-43.
Jeremy Avigad (2010). Understanding, Formal Verification, and the Philosophy of Mathematics. Journal of the Indian Council of Philosophical Research 27:161-197.
Jean Paul Van Bendegem (1988). Non-Formal Properties of Real Mathematical Proofs. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:249 - 254.
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2011-05-29

Total downloads

0

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.