On Wright's inductive definition of coherence truth for arithmetic

Analysis 63 (1):6–15 (2003)
In “Truth – A Traditional Debate Reviewed” (1999), Crispin Wright proposed an inductive definition of “coherence truth” for arithmetic relative to an arithmetic base theory B. Wright’s definition is in fact a notational variant of the usual Tarskian inductive definition, except for the basis clause for atomic sentences. This paper provides a model-theoretic characterization of the resulting sets of sentences "cohering" with a given base theory B. These sets are denoted WB. Roughly, if B satisfies a certain minimal condition (for each term t, B proves an equation of the form t = n, where n is a numeral), then WB is the Th(M), where M is the canonical model of the set At(B) of atomic sentences provable in B. The paper also shows that the disquotational T-scheme is provable (in a metatheory T) from Wright’s inductive definition just in case the base theory B is (provably in T) sound and complete for arithmetic atomic sentences
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    9 ( #128,813 of 1,088,426 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,426 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.