Identification of a non-linear model as a new method to detect expiratory airflow limitation in mechanically ventilated patients

Acta Biotheoretica 52 (4) (2004)
Expiratory flow limitation (EFL) can occur in mechanically ventilated patients with chronic obstructive pulmonary disease and other disorders. It leads to dynamic hyperinflation with ensuing deleterious consequences. Detecting EFL is thus clinically relevant. Easily applicable methods however lack this detection being routinely made in intensive care. Using a simple mathematical model, we propose a new method to detect EFL that does not require any intervention or modification of the ongoing therapeutic. The model consists in a monoalveolar representation of the respiratory system, including a collapsible airway that is submitted to periodic changes in pressure at the airway opening: EFL provokes a sharp expiratory increase in the resistance Rc of the collapsible airway. The model parameters were identified via the Levenberg-Marquardt method by fitting simulated data on the airway pressure and the flow signals recorded in 10 mechanically ventilated patients. A sensitivity study demonstrated that only 8/11 parameters needed to be identified, the remaining three being given reasonable physiological values. Flow-volume curves built at different levels of positive expiratory pressure, PEEP, during PEEP trials (stepwise increases in positive end-expiratory pressure to optimize ventilator settings) have shown evidence of EFL in three cases. This was concordant with parameter identification (high Rc during expiration for EFL patients). We conclude from these preliminary results that our model is a potential tool for the non-invasive detection of EFL in mechanically ventilated patients.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,230 of 1,088,810 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.