On the no-counterexample interpretation

Journal of Symbolic Logic 64 (4):1491-1511 (1999)
Abstract
In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals Φ A of order type 0 which realize the Herbrand normal form A H of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination were found. These proofs however do not carry out the no-counterexample interpretation as a local proof interpretation and don't respect the modus ponens on the level of the no-counterexample interpretation of formulas A and A → B. Closely related to this phenomenon is the fact that both proofs do not establish the condition (δ) and--at least not constructively-- (γ) which are part of the definition of an 'interpretation of a formal system' as formulated in [15]. In this paper we determine the complexity of the no-counterexample interpretation of the modus ponens rule for (i) PA-provable sentences, (ii) for arbitrary sentences A, B ∈ L(PA) uniformly in functionals satisfying the no-counterexample interpretation of (prenex normal forms of) A and A → B, and (iii) for arbitrary A, B ∈ L(PA) pointwise in given α( 0 ) -recursive functionals satisfying the no-counterexample interpretation of A and A → B. This yields in particular perspicuous proofs of new uniform versions of the conditions (γ), (δ). Finally we discuss a variant of the concept of an interpretation presented in [17] and show that it is incomparable with the concept studied in [15], [16]. In particular we show that the no-counterexample interpretation of PA n by α( n (ω))-recursive functionals (n ≥ 1) is an interpretation in the sense of [17] but not in the sense of [15] since it violates the condition (δ)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,350
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Paulo Oliva & Thomas Powell (2012). On Spector's Bar Recursion. Mathematical Logic Quarterly 58 (4‐5):356-265.
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #247,637 of 1,096,804 )

Recent downloads (6 months)

3 ( #106,677 of 1,096,804 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.