On dynamic topological and metric logics

Studia Logica 84 (1):129 - 160 (2006)
We investigate computational properties of propositional logics for dynamical systems. First, we consider logics for dynamic topological systems (W.f), fi, where W is a topological space and f a homeomorphism on W. The logics come with ‘modal’ operators interpreted by the topological closure and interior, and temporal operators interpreted along the orbits {w, f(w), f2 (w), ˙˙˙} of points w ε W. We show that for various classes of topological spaces the resulting logics are not recursively enumerable (and so not recursively axiomatisable). This gives a ‘negative’ solution to a conjecture of Kremer and Mints. Second, we consider logics for dynamical systems (W, f), where W is a metric space and f and isometric function. The operators for topological interior/closure are replaced by distance operators of the form ‘everywhere/somewhere in the ball of radius a, ‘for a ε Q +. In contrast to the topological case, the resulting logic turns out to be decidable, but not in time bounded by any elementary function.
Keywords dynamical system  topological logic  topology  metric space  modal logic  temporal logic  decidability
Categories (categorize this paper)
DOI 10.2307/20016823
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,865
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Philip Kremer & Grigori Mints (2005). Dynamic Topological Logic. Annals of Pure and Applied Logic 131 (1-3):133-158.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

14 ( #179,961 of 1,724,878 )

Recent downloads (6 months)

8 ( #81,171 of 1,724,878 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.