Undecidability of first-order intuitionistic and modal logics with two variables

Bulletin of Symbolic Logic 11 (3):428-438 (2005)
Abstract
We prove that the two-variable fragment of first-order intuitionistic logic is undecidable, even without constants and equality. We also show that the two-variable fragment of a quantified modal logic L with expanding first-order domains is undecidable whenever there is a Kripke frame for L with a point having infinitely many successors (such are, in particular, the first-order extensions of practically all standard modal logics like K, K4, GL, S4, S5, K4.1, S4.2, GL.3, etc.). For many quantified modal logics, including those in the standard nomenclature above, even the monadic two-variable fragments turn out to be undecidable
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,304
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #189,936 of 1,096,391 )

Recent downloads (6 months)

3 ( #84,309 of 1,096,391 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.