Heuristic evaluation functions in artificial intelligence search algorithms

Minds and Machines 5 (4):489-498 (1995)
We consider a special case of heuristics, namely numeric heuristic evaluation functions, and their use in artificial intelligence search algorithms. The problems they are applied to fall into three general classes: single-agent path-finding problems, two-player games, and constraint-satisfaction problems. In a single-agent path-finding problem, such as the Fifteen Puzzle or the travelling salesman problem, a single agent searches for a shortest path from an initial state to a goal state. Two-player games, such as chess and checkers, involve an adversarial relationship between two players, each trying to win the game. In a constraint-satisfaction, problem, such as the 8-Queens problem, the task is to find a state that satisfies a set of constraints. All of these problems are computationally intensive, and heuristic evaluation functions are used to reduce the amount of computation required to solve them. In each case we explain the nature of the evaluation functions used, how they are used in search algorithms, and how they can be automatically learned or acquired.
Keywords Artificial intelligence  heuristics  search  two-player games  constraint-satisfaction
Categories (categorize this paper)
DOI 10.1007/BF00974979
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

21 ( #137,372 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.