The Goodman-Kripke Paradox

Dissertation, King's College London (2003)
Abstract
The Kripke/Wittgenstein paradox and Goodman’s riddle of induction can be construed as problems of multiple redescription, where the relevant sceptical challenge is to provide factual grounds justifying the description we favour. A choice of description or predicate, in turn, is tantamount to the choice of a curve over a set of data, a choice apparently governed by implicitly operating constraints on the relevant space of possibilities. Armed with this analysis of the two paradoxes, several realist solutions of Kripke’s paradox are examined that appeal to dispositions or other non-occurrent properties. It is found that all neglect crucial epistemological issues: the entities typically appealed to are not observational and must be inferred on the basis of observed entities or events; yet, the relevant sceptical challenge concerns precisely the factual basis on which this inference is made and the constraints operating on it. All disposition ascriptions, the thesis goes on to argue, contain elements of idealization. To ward off the danger of vacuity resulting from the fact that any disposition ascription is true under just the right ideal conditions, dispositional theories need to specify limits on legitimate forms of idealization. This is best done by construing disposition ascriptions as forms of (implicit) curve-fitting, I argue, where the “data” is not necessarily numeric, and the “curve” fitted not necessarily graphic. This brings us full circle: Goodman’s and Kripke’s problems are problems concerning curve-fitting, and the solutions for it appeal to entities the postulation of which is the result of curve-fitting. The way to break the circle must come from a methodology governing the idealizations, or inferences to the best idealization, that are a part of curve-fitting. The thesis closes with an argument for why natural science cannot be expected to be of much help in this domain, given the ubiquity of idealization.
Keywords Kripke-Wittgenstein paradox  New Riddle of Induction  Curve Fitting
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,750
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-07-26

Total downloads

32 ( #53,295 of 1,098,880 )

Recent downloads (6 months)

3 ( #114,377 of 1,098,880 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.