On extensions of intermediate logics by strong negation

Journal of Philosophical Logic 27 (1):49-73 (1998)
Abstract
In this paper we will study the properties of the least extension n(Λ) of a given intermediate logic Λ by a strong negation. It is shown that the mapping from Λ to n(Λ) is a homomorphism of complete lattices, preserving and reflecting finite model property, frame-completeness, interpolation and decidability. A general characterization of those constructive logics is given which are of the form n(Λ). This summarizes results that can be found already in [13, 14] and [4]. Furthermore, we determine the structure of the lattice of extensions of n(LC)
Keywords constructive logic  intuitionistic logic  Nelson algebras  lattices of logics
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,304
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #174,155 of 1,096,411 )

Recent downloads (6 months)

2 ( #134,922 of 1,096,411 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.