Smoke without fire: What do virtual experiments in cognitive science really tell us?

Abstract
Many activities in Cognitive Science involve complex computer models and simulations of both theoretical and real entities. Artificial Intelligence and the study of artificial neural nets in particular, are seen as major contributors in the quest for understanding the human mind. Computational models serve as objects of experimentation, and results from these virtual experiments are tacitly included in the framework of empirical science. Simulations of cognitive functions, like learning to speak, or discovering syntactical structures in language, are the basis for many claims about human capacities in language acquisition. This raises the question whether results obtained from experiments that are essentially performed on data structures are equivalent to results from "real" experiments. This paper examines some design methodologies for models of cognitive functions using artificial neural nets. The process of conducting the cognitive simulations is largely a projection of theories, or even unsubstantiated conjectures, onto simulated neural structures and an interpretation of the experimental results in terms of the human brain. The problem with this process is that results from virtual experiments are taken to refer unambiguously to the human brain; and the more the language of human cognitive function is deployed in both theory construction and (virtual) experimental interpretation, the more convincing the impression. Additionally, the complexity of the methodologies, principles, and visualization techniques, in the implementation of the computational model, masks the lack of actual similarities between model and real world phenomena. Some computational models involving artificial neural nets have had some success, even commercially, but there are indications that the results from virtual experiments have little value in explaining cognitive functions. The problem seems to be in relating computational, or mathematical, entities to real world objects, like neurons and brains. I argue that the role of Artificial Intelligence as a contributor to the knowledge base of Cognitive Science is diminished as a consequence.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,101
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #267,964 of 1,102,136 )

Recent downloads (6 months)

1 ( #306,622 of 1,102,136 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.