The modal logic of continuous functions on the rational numbers

Archive for Mathematical Logic 49 (4):519-527 (2010)
Abstract
Let ${{\mathcal L}^{\square\circ}}$ be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality □ and a temporal modality ◦, understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language ${{\mathcal L}^{\square\circ}}$ by interpreting ${{\mathcal L}^{\square\circ}}$ in dynamic topological systems, i.e., ordered pairs 〈X, f〉, where X is a topological space and f is a continuous function on X. Artemov, Davoren and Nerode have axiomatized a logic S4C, and have shown that S4C is sound and complete for this semantics. S4C is also complete for continuous functions on Cantor space (Mints and Zhang, Kremer), and on the real plane (Fernández Duque); but incomplete for continuous functions on the real line (Kremer and Mints, Slavnov). Here we show that S4C is complete for continuous functions on the rational numbers
Keywords Modal logic  Temporal logic  Topology
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

13 ( #118,539 of 1,098,129 )

Recent downloads (6 months)

2 ( #172,576 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.