The modal logic of continuous functions on the rational numbers

Archive for Mathematical Logic 49 (4):519-527 (2010)
Let ${{\mathcal L}^{\square\circ}}$ be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality □ and a temporal modality ◦, understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language ${{\mathcal L}^{\square\circ}}$ by interpreting ${{\mathcal L}^{\square\circ}}$ in dynamic topological systems, i.e., ordered pairs 〈X, f〉, where X is a topological space and f is a continuous function on X. Artemov, Davoren and Nerode have axiomatized a logic S4C, and have shown that S4C is sound and complete for this semantics. S4C is also complete for continuous functions on Cantor space (Mints and Zhang, Kremer), and on the real plane (Fernández Duque); but incomplete for continuous functions on the real line (Kremer and Mints, Slavnov). Here we show that S4C is complete for continuous functions on the rational numbers
Keywords Modal logic  Temporal logic  Topology
Categories (categorize this paper)
DOI 10.1007/s00153-010-0185-8
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

18 ( #153,723 of 1,726,249 )

Recent downloads (6 months)

5 ( #147,227 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.