A negationless interpretation of intuitionistic theories

Erkenntnis 53 (1-2):155-179 (2000)
Abstract
In a seriesof papers beginning in 1944, the Dutch mathematician and philosopherGeorge Francois Cornelis Griss proposed that constructivemathematics should be developedwithout the use of the intuitionistic negation1 and,moreover, without any use of a nullpredicate.In the present work, we give formalized versions of intuitionisticarithmetic, analysis,and higher-order arithmetic in the spirit ofGriss' ``negationless intuitionistic mathematics''and then consider their relation to thecurrent formalizations of thesetheories
Keywords intuitionism  negationless intuitionistic mathematics  arithmetic  analysis  translatability
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    3 ( #223,982 of 1,088,616 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.