The Surprise Examination Paradox and the Second Incompleteness Theorem

Abstract
We give a new proof for Godel's second incompleteness theorem, based on Kolmogorov complexity, Chaitin's incompleteness theorem, and an argument that resembles the surprise examination paradox. We then go the other way around and suggest that the second incompleteness theorem gives a possible resolution of the surprise examination paradox. Roughly speaking, we argue that the flaw in the derivation of the paradox is that it contains a hidden assumption that one can prove the consistency of the mathematical theory in which the derivation is done; which is impossible by the second incompleteness theorem
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    FangWen Yuan (2008). Query the Triple Loophole of the Proof of Gödel Incompleteness Theorem. Proceedings of the Xxii World Congress of Philosophy 41:77-94.
    Gregory J. Chaitin (1970). Computational Complexity and Godel's Incompleteness Theorem. [Rio De Janeiro,Centro Técnico Científico, Pontifícia Universidade Católica Do Rio De Janeiro.
    Analytics

    Monthly downloads

    Added to index

    2010-12-08

    Total downloads

    33 ( #44,430 of 1,089,155 )

    Recent downloads (6 months)

    2 ( #42,781 of 1,089,155 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.