Gentzen formulations of two positive relevance logics

Studia Logica 39 (4):381 - 403 (1980)
Abstract
The author gentzenizes the positive fragmentsT + andR + of relevantT andR using formulas with, prefixes (subscripts). There are three main Gentzen formulations ofS +{T+,R +} calledW 1 S +,W 2 S + andG 2 S +. The first two have the rule of modus ponens. All of them have a weak rule DL for disjunction introduction on the left. DL is not admissible inS + but it is needed in the proof of a cut elimination theorem forG 2 S +.W 1 S + has a weak rule of weakeningW 1 and it is not closed under a general transitivity rule. This allows the proof that A inS + iff A inW 1 S +. From the cut elimination theorem forG 2 S + it follows that if A inS +, then A inG 2 S +. In order to prove the converse,W 2 S + is needed. It contains modus ponens, transitivity, and a restricted weakening rule.G 2 S + is contained inW 2 S + and there is a proof that A inW 2 S + iff A inW 1 S +.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,768
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

13 ( #119,482 of 1,099,017 )

Recent downloads (6 months)

7 ( #33,832 of 1,099,017 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.