Nonseparability and quantum chaos

Philosophy of Science 65 (1):50-75 (1998)
Abstract
Conventional wisdom has it that chaotic behavior is either strongly suppressed or absent in quantum models. Indeed, some researchers have concluded that these considerations serve to undermine the correspondence principle, thereby raising serious doubts about the adequacy of quantum mechanics. Thus, the quantum chaos question is a prime subject for philosophical analysis. The most significant reasons given for the absence or suppression of chaotic behavior in quantum models are the linearity of Schrödinger’s equation and the unitarity of the time-evolution described by that equation. Both are shown in this essay to be irrelevant by demonstrating that the crucial feature for chaos is the nonseparability of the Hamiltonian. That demonstration indicates that quantum chaos is likely to be exhibited in models of open quantum systems. A measure for probing such models for chaotic behavior is developed, and then used to show that quantum mechanics has chaotic models for systems having a continuous energy spectrum. The prospects of this result for vindicating the correspondence principle (or the motivation behind it, at least) are then briefly examined.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,337
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

13 ( #115,744 of 1,096,601 )

Recent downloads (6 months)

5 ( #50,170 of 1,096,601 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.