Non-monotonic probability theory and photon polarization

Journal of Philosophical Logic 36 (4):449 - 472 (2007)
A non-monotonic theory of probability is put forward and shown to have applicability in the quantum domain. It is obtained simply by replacing Kolmogorov's positivity axiom, which places the lower bound for probabilities at zero, with an axiom that reduces that lower bound to minus one. Kolmogorov's theory of probability is monotonic, meaning that the probability of A is less then or equal to that of B whenever A entails B. The new theory violates monotonicity, as its name suggests; yet, many standard theorems are also theorems of the new theory since Kolmogorov's other axioms are retained. What is of particular interest is that the new theory can accommodate quantum phenomena (photon polarization experiments) while preserving Boolean operations, unlike Kolmogorov's theory. Although non-standard notions of probability have been discussed extensively in the physics literature, they have received very little attention in the philosophical literature. One likely explanation for that difference is that their applicability is typically demonstrated in esoteric settings that involve technical complications. That barrier is effectively removed for non-monotonic probability theory by providing it with a homely setting in the quantum domain. Although the initial steps taken in this paper are quite substantial, there is much else to be done, such as demonstrating the applicability of non-monotonic probability theory to other quantum systems and elaborating the interpretive framework that is provisionally put forward here. Such matters will be developed in other works.
Keywords Boolean operations  probability  quantum domain
Categories (categorize this paper)
DOI 10.2307/30226898
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,865
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 6 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

54 ( #61,820 of 1,724,882 )

Recent downloads (6 months)

36 ( #30,831 of 1,724,882 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.