Coordinate formalism on Hilbert manifolds

Infinite-dimensional manifolds modelled on arbitrary Hilbert spaces of functions are considered. It is shown that changes in model rather than changes of charts within the same model make coordinate formalisms on finite and infinite-dimensional manifolds deeply similar. In this context the infinite-dimensional counterparts of simple notions such as basis, dual basis, orthogonal basis, etc. are shown to be closely related to the choice of a model. It is also shown that in this formalism a single tensor equation on an infinite-dimensional manifold produces a family of functional equations on different spaces of functions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,890
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads


Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.