Coordinate formalism on abstract Hilbert space

Abstract
Coordinate formalism on Hilbert manifolds developed in \cite{Kryukov} is reviewed. The results of \cite{Kryukov} are applied to the simpliest case of a Hilbert manifold: the abstract Hilbert space. In particular, functional transformations preserving properties of various linear operators on Hilbert spaces are found. Any generalized solution of an arbitrary linear differential equation with constant coefficients is shown to be related to a regular solution by a (functional) coordinate transformation. The results also suggest a way of using generalized functions to solve nonlinear problems on Hilbert spaces.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,018
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #439,159 of 1,101,075 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.