Coordinate formalism on abstract Hilbert space

Coordinate formalism on Hilbert manifolds developed in \cite{Kryukov} is reviewed. The results of \cite{Kryukov} are applied to the simpliest case of a Hilbert manifold: the abstract Hilbert space. In particular, functional transformations preserving properties of various linear operators on Hilbert spaces are found. Any generalized solution of an arbitrary linear differential equation with constant coefficients is shown to be related to a regular solution by a (functional) coordinate transformation. The results also suggest a way of using generalized functions to solve nonlinear problems on Hilbert spaces.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,879
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads

1 ( #629,558 of 1,725,168 )

Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.