On the Problem of Emergence of Classical Space—Time: The Quantum-Mechanical Approach

Foundations of Physics 34 (8):1225-1248 (2004)
The Riemannian manifold structure of the classical (i.e., Einsteinian) space-time is derived from the structure of an abstract infinite-dimensional separable Hilbert space S. For this S is first realized as a Hilbert space H of functions of abstract parameters. The space H is associated with the space of states of a macroscopic test-particle in the universe. The spatial localization of state of the particle through its interaction with the environment is associated with the selection of a submanifold M of realization H. The submanifold M is then identified with the classical space (i.e., a space–like hypersurface in space-time). The mathematical formalism is developed which allows recovering of the usual Riemannian geometry on the classical space and, more generally, on space and time from the Hilbert structure on S. The specific functional realizations of S are capable of generating spacetimes of different geometry and topology. Variation of the length-type action functional on S is shown to produce both the equation of geodesics on M for macroscopic particles and the Schrödinger equation for microscopic particles
Keywords space–time  emergence  Hilbert manifolds  generalized functions
Categories (categorize this paper)
DOI 10.1023/B:FOOP.0000041290.67197.a7
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,201
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

81 ( #58,379 of 1,940,976 )

Recent downloads (6 months)

2 ( #333,940 of 1,940,976 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.