Does Possible World Semantics Turn all Propositions into Necessary ones?

Journal of Pragmatics 39 (5):972-916 (2007)
Abstract
"Jim would still be alive if he hadn't jumped" means that Jim's death was a consequence of his jumping. "x wouldn't be a triangle if it didn't have three sides" means that x's having a three sides is a consequence its being a triangle. Lewis takes the first sentence to mean that Jim is still alive in some alternative universe where he didn't jump, and he takes the second to mean that x is a non-triangle in every alternative universe where it doesn't have three sides. Why did Lewis have such obviously wrong views? Because, like so many of his contemporaries, he failed to grasp the truth that it is the purpose of the present paper to demonstrate, to wit: No coherent doctrine assumes that statements about possible worlds are anything other than statements about the dependence-relations governing our world. The negation of this proposition has a number of obviously false consequences, for example: all true propositions are necessarily true (there is no modal difference between "2+2=4" and "Socrates was bald"); all modal terms (e.g. "possible," "necessary") are infinitely ambiguous; there is no difference between laws of nature (e.g. "metal expands when heated") and accidental generalizations (e.g. "all of the coins in my pocket are quarters"); and there is no difference between the belief that 1+1=2 and the belief that arithmetic is incomplete. Given that possible worlds are identical with mathematical models, it follows that the concept of model-theoretic entailment is useless in the way of understanding how inferences are drawn or how they should be drawn. Given that the concept of formal-entailment is equally useless in these respects, it follows that philosophers and mathematicians have simply failed to shed any light on the nature of the consequence-relation. Q's being either a formal or a model-theoretic consequence of P is parasitic on its bearing some third, still unidentified relation to P; and until this relation has been identified, the discipline of philosophical logic has yet to begin.
Keywords modality  semantics  possible worlds
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive John-Michael Kuczynski, Does Possible World Semantics Turn all Propositions into Necessary ones?
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Greg Restall (1997). Ways Things Can't Be. Notre Dame Journal of Formal Logic 38 (4):583-596.
Scott Soames (2011). True At. [REVIEW] Analysis 71 (1):124 - 133.
Sam Cowling (2011). The Limits of Modality. Philosophical Quarterly 61 (244):473-495.
Kathrin Glüer & Peter Pagin (2008). Relational Modality. Journal of Logic, Language and Information 17 (3):307-322.
E. -W. Stachow (1980). A Model Theoretic Semantics for Quantum Logic. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:272 - 280.
Peter J. King (1993). Lycan on Lewis and Meinong. Proceedings of the Aristotelian Society 93:193 - 201.
Edward N. Zalta (1997). A Classically-Based Theory of Impossible Worlds. Notre Dame Journal of Formal Logic 38 (4):640-660.
Analytics

Monthly downloads

Added to index

2012-09-10

Total downloads

48 ( #33,939 of 1,101,092 )

Recent downloads (6 months)

20 ( #7,700 of 1,101,092 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.