On a combinatorial property of Menas related to the partition property for measures on supercompact cardinals

Journal of Symbolic Logic 48 (2):475-481 (1983)
Abstract
T. K. Menas [4, pp. 225-234] introduced a combinatorial property χ (μ) of a measure μ on a supercompact cardinal κ and proved that measures with this property also have the partition property. We prove here that Menas' property is not equivalent to the partition property. We also show that if α is the least cardinal greater than κ such that P κ α bears a measure without the partition property, then α is inaccessible and Π 2 1 -indescribable
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,068
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

12 ( #135,156 of 1,101,833 )

Recent downloads (6 months)

6 ( #52,381 of 1,101,833 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.