A proof–theoretic study of the correspondence of hybrid logic and classical logic

In this paper, we show the equivalence between the provability of a proof system of basic hybrid logic and that of translated formulas of the classical predicate logic with equality and explicit substitution by a purely proof–theoretic method. Then we show the equivalence of two groups of proof systems of hybrid logic: the group of labelled deduction systems and the group of modal logic-based systems.
Keywords Proof theory  Hybrid logic  Classical logic
Categories (categorize this paper)
DOI 10.1007/s10849-006-9023-0
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Gaisi Takeuti (1987). Proof Theory. Sole Distributors for the U.S.A. And Canada, Elsevier Science Pub. Co..
Torben BraÜner (2005). Natural Deduction for First-Order Hybrid Logic. Journal of Logic, Language and Information 14 (2):173-198.

View all 8 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

7 ( #304,000 of 1,726,249 )

Recent downloads (6 months)

2 ( #289,836 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.