On classification of scientific revolutions

Abstract
The question whether Kuhn's theory of scientific revolutions could be applied to mathematics caused many interesting problems to arise. The aim of this paper is to discuss whether there are different kinds of scientific revolution, and if so, how many. The basic idea of the paper is to discriminate between the formal and the social aspects of the development of science and to compare them. The paper has four parts. In the first introductory part we discuss some of the questions which arose during the debate of the historians of mathematics. In the second part, we introduce the concept of the epistemic framework of a theory. We propose to discriminate three parts of this framework, from which the one called formal frame will be of considerable importance for our approach, as its development is conservative and gradual. In the third part of the paper we define the concept of epistemic rupture as a discontinuity in the formal frame. The conservative and gradual nature of the changes of the formal frame open the possibility to compare different epistemic ruptures. We try to show that there are four different kinds of epistemic rupture, which we call idealisation, re-presentation, objectivisation and re-formulation. In the last part of the paper we derive from the classification of the epistemic ruptures a classification of scientific revolutions. As only the first three kinds of rupture are revolutionary (the re-formulations are rather cumulative), we obtain three kinds of scientific revolution: idealisation, re-presentation, and objectivisation. We discuss the relation of our classification of scientific revolutions to the views of Kuhn, Lakatos, Crowe, and Dauben.
Keywords scientific revolutions  epistemic ruptures  epistemicframework  incommensurability  paradigm  Kuhn  Lakatos  Crowe  Dauben
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

65 ( #21,559 of 1,096,634 )

Recent downloads (6 months)

13 ( #11,508 of 1,096,634 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.