Frege's cardinals as concept-correlates

Erkenntnis 65 (2):207 - 243 (2006)
Abstract
In his Grundgesetze, Frege hints that prior to his theory that cardinal numbers are objects (courses-of-values) he had an “almost completed” manuscript on cardinals. Taking this early theory to have been an account of cardinals as second-level functions, this paper works out the significance of the fact that Frege’s cardinal numbers (as objects) is a theory of concept-correlates. Frege held that, where n>2, there is a one–one correlation between each n-level function and an n−1 level function, and a one–one correlation between each first-level function and an object (a course-of-values of the function). Applied to cardinals, the correlation offers new answers to some perplexing features of Frege’s philosophy. It is shown that within Frege’s concept-script, a generalized form of Hume’s Principle is equivalent to Russell’s Principle of Abstraction – a principle Russell employed to demonstrate the inadequacy of definition by abstraction. Accordingly, Frege’s rejection of definition of cardinal number by Hume’s Principle parallels Russell’s objection to definition by abstraction. Frege’s correlation thesis reveals that he has a way of meeting the structuralist challenge (later revived by Benacerraf, 1965) that it is arithmetic, and not a privileged progression of objects, that matters to the finite cardinals.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Paul Benacerraf (1965). What Numbers Could Not Be. Philosophical Review 74 (1):47-73.
Patricia A. Blanchette (1994). Frege's Reduction. History and Philosophy of Logic 15 (1):85-103.
George Boolos (1993). Whence the Contradiction? Aristotelian Society Supplementary Volume 67:211--233.

View all 15 references

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

22 ( #76,173 of 1,098,129 )

Recent downloads (6 months)

7 ( #33,031 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.