Macroscopic observables and the born rule. I. long run frequencies

Abstract
We clarify the role of the Born rule in the Copenhagen Interpretation of quantum mechanics by deriving it from Bohr's doctrine of classical concepts, translated into the following mathematical statement: a quantum system described by a noncommutative C*-algebra of observables is empirically accessible only through associated commutative C*-algebras. The Born probabilities emerge as the relative frequencies of outcomes in long runs of measurements on a quantum system; it is not necessary to adopt the frequency interpretation of single-case probabilities (which will be the subject of a sequel paper). Our derivation of the Born rule uses ideas from a program begun by Finkelstein (1965) and Hartle (1968), intending to remove the Born rule as a separate postulate of quantum mechanics. Mathematically speaking, our approach refines previous elaborations of this program - notably the one due to Farhi, Goldstone, and Gutmann (1989) as completed by Van Wesep (2006) - in replacing infinite tensor products of Hilbert spaces by continuous fields of C*-algebras. In combination with our interpretational context, this technical improvement circumvents valid criticisms that earlier derivations of the Born rule have provoked, especially to the effect that such derivations were mathematically flawed as well as circular. Furthermore, instead of relying on the controversial eigenvector-eigenvalue link in quantum theory, our derivation just assumes that pure states in classical physics have the usual interpretation as truthmakers that assign sharp values to observables.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    4 ( #198,664 of 1,089,057 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.