Automatic bare sluice disambiguation in dialogue

The capacity to recognise and interpret sluices—bare wh-phrases that exhibit a sentential meaning—is essential to maintaining cohesive interaction between human users and a machine interlocutor in a dialogue system. In this paper we present a machine learning approach to sluice disambiguation in dialogue. Our experiments, based on solid theoretical considerations, show that applying machine learning techniques using a compact set of features that can be automatically identified from PoS markings in a corpus can be an efficient tool to disambiguate between sluice interpretations.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,664 of 1,089,062 )

    Recent downloads (6 months)

    2 ( #42,757 of 1,089,062 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.